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(hi) masses within our scheme. Assuming the pion and 
nucleon masses and the TNN coupling constant to be 
known, these turn out to be 1200, 1640, and 2310 MeV. 
I t is a curious fact that, together with the nucleon, 
which has a mass of 940 MeV, these masses mj obey 
to a few percent the rigid rotator formula mj 
= AJ(J+1)+B, where A and B are constants. This is 
exactly the prediction of the strong-coupling model16 

which, however, had an additional arbitrary parameter. 

I. INTRODUCTION 

ELASTIC and inelastic reaction amplitudes of ele­
mentary particles and isobars at high energies 

characteristically exhibit a peak in the forward direction. 
In some reactions, such as proton-antiproton elastic 
scattering,1 the form of the amplitude can be readily in­
terpreted by analogy with optical diffraction patterns, 
suggesting a semiclassical picture of the nucleon with an 
absorptive core and a diffuse boundary, phenomenologi-
cally of Gaussian shape. In some other cases, for 
example2 K++p-^ K°+Nz/2*++, the center-of-mass 
angular distribution of the production reaction is 
clearly consistent with a one-meson exchange formula. 
The most common high-energy reaction behavior seems 
to be intermediate between these extremes. 

Phenomenological corrections to one-particle ex­
change formulas based on the introduction of form fac­
tors have been widely used in the analysis of peripheral 
inelastic processes,3 but these form factors have at least 
two objectionable properties. The first is lack of 
generalizability; evidence has accumulated that such a 
form factor appropriate to the vertex pirw has a behavior 
much different from that for the pKK vertex,2 while a 

* * Partially supported by the National Science Foundation. 
1 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. 

Russell, and L. C. L. Yuan, Phys. Rev. Letters 11, 503 (1963). 
2 V. Barger and E. McCliment, Phys. Letters 9, 191 (1964). 
3 E. Ferrari, Nuovo Cimento 30, 240 (1963); E. Ferrari and F. 

Sellari, Nuovo Cimento 27, 1450 (1963). 

The above masses of the (f,f) and (f,f) particles 
should be compared with the experimental values of 
1240 and 1560 MeV, respectively. In the latter case we 
are assuming, of course, that we can identify our par­
ticle with the resonance of Ref. 7. [Actually, the value 
co5/2,5/2 in Eq. (2.14) does not coincide with the maxi­
mum of the cross section; it corresponds to 1650 MeV, 
which may be the more appropriate quantity to com­
pare with our calculated value.] 

close relation between these form factors would be ex­
pected in various symmetry schemes such as unitary 
symmetry. 

The second is a lack of theoretical foundation within 
the framework of dispersion, or on-the-mass-shell, tech­
niques. A form factor may be expected to have an im­
portant influence in a perturbation-theoretic approach, 
but even then it is difficult to see the source of such large 
variations as are required to fit the data. This point 
has been discussed by Durand and Chiu,4 Ross and 
Shaw,5 and earlier by Baker and Blankenbecler.6 

The authors (particularly Refs. 4 and 5) also point 
out that the inclusion of initial and final-state inter­
actions, usually taken to be strong elastic scattering 
vi th a diffraction character, is very important in the 
analysis of peripheral inelastic processes; and, in fact, 
these corrections may be quite sufficient to explain the 
deviations from one-meson exchange previously ascribed 
to form factors. Essentially the same conclusion has 
been reached by Dar and Tobocman in a slightly dif­
ferent language; a detailed discussion of the mechanism 
has been given by Gottfried and Jackson.7 

4 L. Durand and Y. T. Chiu, Phys. Rev. Letters 12, 399 (1964). 
6 M . H. Ross and G. L. Shaw, Phys. Rev. Letters 12, 672 

(1964). 
6 M. Baker and R. Blankenbecler, Phys. Rev. 128, 415 (1962). 
7 A. Dar and W. Tobocman, Phys. Rev. Letters 12, 511 (1964); 

A. Dar, ibid. 13, 91 (1964). K. Gottfried and J. D. Jackson, CERN 
paper, 1964 (unpublished), 
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An approximate dispersion-theoretic treatment of peripheral inelastic processes is introduced with the aid 
of a J^-matrix formalism based on the impact-parameter representation of Blankenbecler and Goldberger. 
The method allows the use of one-meson exchange poles as a framework for constructing a multichannel 
scattering amplitude which satisfies unitarity in the high-energy region, allowing for an indefinitely large 
number of open channels. The reaction matrix is time-reversal symmetric and exhibits any other symmetries 
of the pole terms. Applications are numerically worked out for models of high-energy Kp and np charge ex­
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is given of peripheral isobar production models. The high-energy pp and Kp diffraction scattering is ex­
amined, as well as the agreement of the small-momentum-transfer behavior with a simple model not involv­
ing Regge poles. The method sheds no light on the difference between pp and pp scattering at high energies. 
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The investigations mentioned above share, however, 
certain drawbacks which impede a theoretical under­
standing of the reactions. They assume that the in­
elasticity is due to a fictitious absorptive potential, or 
directly introduce a phenomenological complex phase 
shift for the elastic scattering amplitudes. This makes an 
intuitive grasp of the physics involved difficult, and one 
has no basis for generalizing from one reaction to 
another. 

The impact-parameter i^-matrix formalism to be pre­
sented below has the advantages of the approaches 
used by the preceding authors, with additional flexi­
bility and a more direct contact with physical models. 
I t will be possible to construct a set of scattering and 
reaction amplitudes which is based entirely on one-
meson exchange processes, if desired. The set of ampli­
tudes will in any case satisfy multichannel unitarity in 
a high-energy limit. The imaginary parts of the ampli­
tudes will be nonvanishing, and polarization effects may 
be easily handled. Time reversal symmetry will be 
automatically satisfied, as well as any other higher sym­
metries one wishes to introduce into the meson-
exchange pole terms. 

Theoretical justification for the formulas are supplied 
only insofar as the behavior for small momentum trans­
fer is treated. A complete theory including large mo­
mentum transfer behavior is not attempted, although 
the formalism allows a phenomenological treatment of 
short-range reactions to be introduced in a unitary way. 

After the basic approximations and formalism have 
been set down, simple models will be quantitatively 
examined for pp elastic scattering, Kp charge exchange, 
and np charge exchange. In the latter two cases it is 
found that the available energy data have a plausible 
interpretation in terms of a meson exchange model. The 
pp diffraction can be fit by a more complicated model. A 
qualitative examination of the vector-meson exchange 
model for isobar production then shows that, contrary 
to the conclusions of Ref. 2, the model is probably quite 
adequate to explain the available data without form 
factors when the unitary modifications are included as 
in the analysis of the present work. 

II. BASIC FORMALISM AND APPROXIMATION 

The object of this work is the development of a multi­
channel, unitary representation for reactions at high 
energies. Although we could treat many-particle states, 
it will be much simpler to begin with a representation 
of the effects of inelastic channels by including only 
two-body open channels. One surmises that the uni­
tarity effects of multiparticle states on selected two-
body reactions may be simulated in this way, if iso­
bars are included among the final state objects. 

As a second simplification, we assume that there are 
a large number of open channels below the energy we 
are interested in, and that any nearby thresholds are 
relatively unimportant. Presumably, the latter would be 

true if we actually were considering multiparticle states 
from a statistical viewpoint, since the final state many-
body phase space would be small close to threshold for 
any particular channel. Together with this, we assume 
the momenta in all channels are large compared to the 
masses, so we can use high-energy limit conditions in 
all the open channels (not only the lowest, elastic 
scattering channel). 

We will ignore spin in the initial formulation, al­
though this can easily be incorporated if more detailed 
properties of the reactions are to be computed. In the 
examples treated later, one of the initial particles is 
always a proton, but we will ignore effects connected 
with its spin in developing the formalism. 

A further simplification of the problem is necessary 
to reduce the algebra involved. We will take most of 
the inelastic final states to be noninteracting, and allow 
transitions only to and from the elastic scattering chan­
nel. This will still allow us to accomplish the objective 
outlined in the introduction; if the effects of inelasticity 
enter as an incoherent sum over a large number of 
channels, we suppose that the interactions in any one 
channel have relatively little influence on the sum. I t is 
clear that such an approach is tenable only at high 
energies. We will also ignore any possible effects of 
anomalous thresholds or complex singularities, since we 
are in a very high-energy region. 

Finally, baryon exchange terms will be ignored, which 
corresponds to using poles only in the momentum trans­
fer variable. This is appropriate for meson-exchange 
models. 

The formulation of scattering amplitudes will now be 
taken in the Fourier-Bessel representation developed 
for dispersion theory by Blankenbecler and Goldberger 
(BG),8 and further amplified by Baker and Blanken-
beqler (BB).6 We could alternatively develop the formal­
ism in the partial-wave series representation, but 
the impact-parameter picture which accompanies the 
Fourier-Bessel representation aids physical understand­
ing of the approximations involved and is readily 
adapted to phenomenological approximations for the 
large momentum transfer behavior. In addition, the 
formalism has been discussed at some length in BG and 
BB, and we will merely summarize the relevant formu­
las up to the point where our approximation methods 
become significantly different from those of BB. 

Following the covariant normalization of BG, Sec. 
VII, we define the multichannel, two-body scattering 
matrix M such that the center-of-mass elastic scattering 
differential cross section for scattering of particle 1 on 
a proton (11 channel) is given by 

da (Mv+Mi)2 

— | Mn(s,t) 12X , (2.1) 
dti s 

8 R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766 
(1962). 
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where s is the square of the total c m . energy, Mp is the 
proton mass, and Mi the mass of particle 1. The Ma 
have singularities only for positive s and positive / 
under our approximations. 

The Fourier-Bessel components of M will be denoted 
b y H ; 

M(*,0= / MJ/o(&(-01 / 2)H(s,&2), (2.2) 

and we do not introduce the singularities in u, which 
lead to two signatures as in Sec. VII of BG, since we 
are ignoring baryon exchange singularities. 

In the limit kjj2>l for all i, where ki is the center-of-
mass momentum in channel i, the matrix H now should 
be taken to satisfy the multichannel unitarity condi­
tion in the form [compare BG, Eq. (7.11) and Sec. I l l ] 

I m H = H t r ( s ) H , (2.3) 

where r is a diagonal matrix of phase space factors appro­
priate to the FB representation: Explicity, we put 

r«(.s) = (Mu+M«)/(2lns1'*), (2.4) 

where Mu, M<u are the masses of the two bodies in the 
ith channel. We will later assume that most of the im­
portant channels have particles of about the same mass, 
and use 2Mav instead of (Mu+Mii); furthermore we 
will replace k% by s1/2/2, since the energy is large com­
pared to the masses. I t is easy to keep the more general 
form for r however at this point. Now, if we write 

H(^ 2 ) = K(s,b)[l-ir(s)K(s,b)T (2.5) 

with a real matrix K, the function H will automatically 
satisfy asymptotic unitarity condition (2.3). This rep­
resentation will form the basis for our approximation 
methods. 

Before explicitly introducing meson-exchange models, 
we will comment on the relation between (2.5) and other 
unitary calculation methods. I t was pointed out in BG 
(Eq. 3.20) that the large-fc Fourier-Bessel components 
of the scattering amplitude are proportional to the 
partial-wave amplitudes for large I, if b and I are re­
lated by 

kb=l+%. (2.6) 

The condition &fc>>l is required for this association, 
but that is precisely the condition under which (2.5) is 
automatically unitary for real K. Compare the partial-
wave representation of the elastic scattering matrix 
element 

Mu(s,t) = 
(Mp+M!) J 

E(2/+D 
e2i8j £ 

X-P/(cos0) : , (2.7) 
2iki 

with the representation (2.5) as follows: Writing 
e2i5j-~l/i=Tj/l~-irj, where TJ(S) = taridj(s), we can 

pass to the limit of a large number of angular momen­
tum contributions and write 

Mn(s,t)--
sl/2h r°° l+i 

Xdl Wcos0) . 
\ k 1 l-iri(s) 

Then employing the asymptotic representation for 
large I 

Pi(cos9)^Jo(2(l+h) sinKO/2)), 

we obtain by a change of variable 

sll2kx 
Mu(s,t)--

(MP+M1)J0 

bdbJo(b(~ty/2y 
r(bPs) 

l — ir(b,s) 

where b== (1+ l/2)/fe, and r(b,s) — n(s) with this identifi­
cation. I t is clear therefore that if only a single elastic 
channel is open, we can write 

s1/2kx 

(Mp+M0 
- r ( M ^ i i W > ) . (2.S 

In general, when a number of inelastic channels are 
considered, we will obtain a complex phase shift, since 
K is to remain real; the relation between the i^-matrix 
elements and r involving the off-diagonal terms will 
contribute an extra imaginary part to r(b,s). This will 
be the source of the absorptive part of the phase shift, 
heretofore treated in a purely phenomenological way. 

Our further approximations will be based on a use of 
the first Born approximations, or meson-exchange pole 
terms, for the iT-matrix elements. These are 

Kii{B) = Hifisfi2) = / xdx MbxlMifis, - x2), (2.9) 

where MijB(s,t) are the pole approximations for the 
reaction amplitude i—>j; these may be scalar or 
pseudoscalar-meson exchange or vector-meson terms, 
the latter written as Regge poles if the high-energy be­
havior is important. I t was proved in BG that the one-
channel elastic amplitude in a nonrelativistic Yukawa 
potential scattering model was well approximated in 
the limit kb^>l by 

Hn{sfi2) = 
l-iHn

B/2k 
(2.10) 

(Eq. 3.11 of BG) which corresponds to using Kn(B) in 
our general Eq. (2.5), ignoring inelastic channels, and 
using the nonrelativistic limit of the phase space 
function. 

We conjecture that the pole terms for K will be good 
approximations in the limit when all &t-fc£>l, even if we 
generalize to relativistic reactions and Regge poles as 
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well as scalar meson exchanges. This must hold if un-
subtracted N/D calculations done at low energies can 
be extrapolated to multichannel problems at high 
energy; if the angular momentum representation is 
used, we find9 

K,= N«[ReD«]-i, (2.11) 

and in meson-exchange models ReD —»1 while N 
approaches the pole approximation at large energies10 

or large /. 
Note that such an approximation is usually much 

better than just taking the pole approximation for My, 
since it is explicitly unitary and will give nontrivial 
polarization and interference phenomena. 

The pole approximations for K^ diverge at small b 
values. Typically we have 

the elastic scattering term is 

*VB> = *<,(*) 
r°° xdx 

Jo p,2+x* 
-Jo(bx) = Rij(s)K0(»b) (2.12) 

for the exchange of a meson of mass /i, where KQ is a 
modified Bessel function, with the properties 

K0(z)->y+ln(2/z) as s - > 0 , 

where y is Euler's constant; (2.13) 

K0(z) - » (ir/2z)1/2e-z as z ->oo . 
Although the divergence for small b is in a region 

where the approximations are invalid, it assures that 
the scattering and reaction Fourier-Bessel amplitudes 
have a characteristic complete "absorption" region with 
a diffuse boundary and some minimum radius deter­
mined by the strength and range of the interactions. 
In a somewhat more realistic model, the sum of many 
strong short-range contributions to the K matrix will 
produce such a "black" region for the elastic scattering 
amplitudes; as will be shown later, this becomes a 
"white" region for any particular inelastic channel. 

With the assumption that the inelastic final-state 
particles have no interactions other than a transition 
back to the (11) channel, we can write the K matrix for 
the system in the form11 

KW)= 

C2 

Wn* 0 

• c 1 
• 0 

• OJ 

(2.14) 

We do not yet make the approximation Kij=KijiB\ 
but we take the high-energy limit such that for all i, 
ru(s)~p(s)~2M/s, where M is an average mass of 
particles in the channels under consideration; we take 
it to be around the proton mass. Now H(s,b) can be 
explicitly computed from Eq. (2.5), and we find that 

9 R. H. Dalitz, Rev. Mod. Phys. 33, 471 (1961), Sec. IV. 
10 See, e.g., R. C. Arnold, Phys. Rev. 134, B1380 (1964), 

Appendix. 
11A similar form has been used by D. S. Chernavskii, Zh. 

Eksperim. i Teor. Fiz. 45, 1558 (1963) [English transl.: Soviet 
Phys.—JETP 18, 1072 (1964)]. 

OL+tp H Cn*Cn 

Hn(s,b*) = -
\ — ipa+p2YL Cn*Cn 

n 

while the production terms are 

(2.15) 

ff*(*,*2) = -
Ci 

1 — ipa+p2J2 Cn*Cn 

(2.16) 

where p(s) = 2M/s. 
Our motivation now is principally to see the modifica­

tion of one-meson exchange terms by the peripheral in­
elastic processes. We expect that all reactions couple to 
inelastic one-pion exchange terms, which have a 
b dependence characteristic of Eq. (2.12), with ix taken 
as the pion mass. If we assume that these are the only 
important contributions for large impact parameter, 
we can factor out the function KQ from each of the off-
diagonal elements Cj in K, leaving a function of s 
only. We will determine any desired s dependence by 
appeal to experiment. Writing 

CjisM^FjWKobib), 

with Fj real, and putting 

GW = P 2 W E ^ 2 W , 

(2.17) 

(2.18) 

we have the more explicit forms of the elastic scattering 
and production amplitudes; 

a(s,b)+i(s/2M)K<?(jib)G{s) 
Hn(5,62) = , (2.19) 

\-i(s/2M)-la(s,b)+K*Kpb)G(s) 

C&Jb) 
Hu(s,b*) = 

1 - i(2M/s)a(s,b)+K0
2(jib)G(s) 

(2.20) 

We expect these then to give the essential corrections 
for large b, which means we should be able to compare 
the behavior of Mu(s,t) for small t a t any given energy, 
given G(s) from experiment and a from a theory such 
as one-meson exchange. This prospect will be examined 
quantitatively for scattering in Sec. IV below. 

The formula (2.20) for a single-production amplitude 
clearly exhibits the general qualitative behavior of our 
approximate amplitudes. The small-Z> region is damped 
out due to the extra factor of K^ixb) in the denominator. 
This will invariably yield a matrix element M y which is 
more sharply peaked in the forward direction than the 
uncorrected one-pion pole term. We will notice this 
effect in the analysis of np charge exchange. This be­
havior is even more pronounced, however, if we examine 
processes which are forbidden to occur through one-
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pion exchange, so the longest-range inelastic iT-matrix 
terms then are obtained from p or K* meson poles. In 
such cases, the suppression from competing one-pion 
inelastic processes is large even in the forward direction. 
Such a case is encountered in the charge-exchange reac­
tion K~-\-p-+Ko+n, where p exchange presumably is 
the most peripheral contribution. This case will be 
quantitatively treated in Sec. V. 

A final qualitative observation needs to be added 
here concerning unitarity and one-meson pole terms. 
In many cases involving spin, the basic pole terms ob­
tained from field theory contain powers of t in the 
numerator as well as the denominator. These generate 
exceptional S-wave (and possibly P-wave) contribu­
tions which are not of the form obtained by analytic 
continuation down from high / values. There is some 
ambiguity in a dispersion-theoretic approach as to 
whether or not these exceptional low partial-wave con­
tributions should be included in the pole approxima­
tions; the question may be resolved if one accepts the 
treatment of the exchanged mesons as Regge poles with 
a trajectory having small, but nonzero, slope. In such a 
case the partial-wave amplitude for 7 = 0 is an analytic 
continuation from higher / values; the pole terms are 
numerically close to the field-theory results for low 
energies, but at high energies resemble the amplitudes 
with deleted 5-wave terms. 

The ambiguity in these low partial waves is relatively 
unimportant, however, when a unitary formalism [such 
as (2.5) above] is applied to compute the scattering 
amplitude. Then the effects of inelastic processes com­
pletely dominate the small4 region of H( ,̂Z>2); the off-
diagonal elements will vanish for small b and the 
diagonal terms approach some nonzero constant [cf. 
Eqs. (2.19), (2.20)]. This has the effect of eliminating 
any exceptional low partial wave terms in the pole 
approximations.12 As a consequence, charge-exchange 
reactions proceeding through one-pion exchange do 
not vanish in the forward direction, and the formulae 
for vector meson models of isobar production2'13 may 
even be qualitatively quite misleading, unless all 
powers of t in the numerators of the matrix elements are 
eliminated, e.g., by expansion in partial fractions. We 
will return to this discussion in Sec. VII. 

The formulas (2.15) and (2.16) are closely related to 
the expressions (1.7) and (1.13) of BB; however, they 
differ in detail because of the nature of the approxima­
tions made here for the inelastic channels. 

12 This point has been discussed in Ref. 4, footnote 7. See also 
Fig. 4 of G. Goldhaber, W. Chinowsky, S. Goldhaber, W. Lee, and 
T. O'Halloran, Phys. Letters 6, 62 (1963) for further indication 
of such an effect. Evaluating A2 (in the numerator) on the mass 
shell in the cross-section formula does not give precisely the same 
results as in the pole-term matrix element; the unitarity conditions 
for various spin amplitudes must be studied when the final-state 
particles can have states of high spin. 

13 L. Stodolsky and J. J. Sakurai, Phys. Rev. Letters 11, 90 
(1963). 

III. RELATIONSHIP TO DWBA AftD 
OPTICAL MODELS 

Motivation similar to that of our work here has 
led previous authors4,6 to utilize the distorted-wave 
Born approximation (DWBA) for relativistic, absorp­
tive potentials acting in the initial and final states. 
This leads to a formula for the partial-wave inelastic 
amplitude of the form4 

^ ( 1 ) W ] ^ i 2 J W e x p p 5 / 2 ) ( , ) ] , (3.1) MnJ(s)-- = exp[i5,r 

where B\iJ is the partial-wave Born approximation 
for the reaction, and 5/ ( 1 ) , 5j-(2) are the complex phase 
shifts describing elastic scattering in channels 1 and 2, 
respectively. This has considerable intuitive appeal, 
but the introduction of an absorptive potential to simu­
late inelasticity is undesirable for two reasons. First, 
the connection between different reactions is obscure 
and generalizations can be made only on purely phe-
nomenological grounds. Second, there is no provision 
for characteristics of the production amplitude to be 
reflected back into the elastic scattering channel, as 
must happen if unitarity is to be satisfied. 

The Z-matrix formalism (2.5) together with approxi­
mations using meson pole terms as in the preceding sec­
tion rectifies these difficulties, although it is expected 
to do so accurately only for large impact parameters. 

I t is instructive to reproduce the result (3.1) as a 
limiting case of the iT-matrix formulas. We simplify, 
however, by taking only a two-channel problem, so the 
phase shifts become real in the limit of small channel 
couplings (small off-diagonal pole terms). Then we will 
find (3.1) is indeed true in the limit i£i2=ir21*—>0, or 
sufficiently high energy. 

For a two-channel problem we would write 

K= 
'Oil P] 

0:2 

(3.2) 

then in the high-energy limit, applying (2.5) yields 

Ktl-ipKJ-1--

X 
"o£i(l — ipa2)-\-ip\ 

0:2(1 — ipax)+ip |/3 (2. 
(3.3) 

where A=(l-ipa1)(l~ipa2)+p2\l3\2; thus the off-
diagonal matrix element is 

H I 2 ( J , 6 2 ) = J8 /A. (3.4) 

Now, for large energies, p2 —» 0; so, if at a given energy 
I /312 is negligible compared to unity—or (if /3 does not 
grow with energy) at any sufficiently high energy— 
this reduces to 

H1%(s,b*) « : : . (3.5) 
(1 — ipai) (1 — loo.*) 
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But the factors in the denominator now just give the 
phase of the amplitudes in the elastic scattering chan­
nels, so using (2.6) we reproduce (3.1) under the stated 
conditions. 

I t is not clear whether a complete justification of (3.1) 
in the limit of small off-diagonal Born terms within the 
framework of our model can be achieved, since there is 
some conflict between the complex-potential viewpoint 
and the representation (2.5). 

Another approximation method, which has been 
applied by Serber14 to high-energy proton-proton dif­
fraction scattering, is based directly on the eikonal 
method15 used with great success in studies of the nu­
clear optical-model potential. With rather drastic as­
sumptions on the validity of a complex potential model, 
the formulas nevertheless reproduce the experimental 
data for large momentum transfer amazingly well. I t 
would clearly be desirable to include this approach in 
the present work, but there are two obstacles to this. 
First, there is no justification in terms of a dispersion-
theoretic foundation; in fact, this method was dis­
carded by Blankenbecler and Goldberger in the be­
ginning in favor of the more conservative N/D repre­
sentation for just this reason. Second, and more serious 
from the point of view of the present work, one needs 
to specify in advance the absorptive potential; and it is 
precisely this concept that the TT-matrix formalism is 
designed to avoid. There is clearly room for improve­
ment in connecting the two points of view. 

IV. ANALYSIS OF pp AND Kp ELASTIC SCATTERING 

In this section, we attempt to fit the small-angle ex­
perimental pp and Kp elastic scattering cross sections 
with simple models for the peripheral inelastic processes. 
Comments on Regge poles will be reserved to the end 
of this section. 

To begin, we shall assume the diagonal iT-matrix 
elements Kih K22, etc., corresponding to the elastic 
scattering channels are negligible, so that all the observed 
cross section will be due to inelasticity. This is not quite 
consistent with the experimental data,1 since extrap­
olation of the elastic amplitudes to zero angle and 
application of the optical theorem in pp scattering indi­
cates a few percent, real part exists in the amplitude; 
but we shall use the assumption as a plausible first 
approximation. 

Assuming only pion poles in the off-diagonal i£-matrix 
elements, we are led to Eq. (2.19) with a = 0 , for the 
elastic scattering amplitude. Now, we observe from ex­
periment that the diffraction peaks do not change shape 
with energy. This leads us to put 

G(*) = a, (4.1) 

14 R. Serber, Phys. Rev. Letters 10, 357 (1963); Rev. Mod. 
Phys. 36, 649 (1964). 

16 R. J. Glauber, in Lectures in Theoretical Physics (Interscience 
Publishers, Inc., New York, 1959) Vol. I. 

where a is a constant for each reaction. Then we have 

Hnfrb*) = i(s/2M) — . (4.2) 
l+aK0*(jib) 

With this formula, we are able to fit the pp data for 
very small momentum transfers (—/)1/2<2/z(—/<0.08 
BeV2/c2) including the magnitude of the elastic cross 
section,_by choosing a=1 .8 at 10 BeV. 

For Kp, the smaller experimental slope and magni­
tude of the diffraction peak is indicative of shorter 
range inelastic processes. This amplitude was fit by 
assuming that the dominant inelastic iT-matrix terms 
could be represented by the exchange of a heavier 
meson. A mass of twice the pion mass was chosen, lead­
ing to a formula for Hn which is obtained from (4.2) 
by replacing ju by 2/x, and taking M to be the average 
of MR and Mp. In this case, the best fit was obtained 
with a—0.6. This fit may be regarded as phenomenologi-
cal, with 3 parameters {a, M, and meson mass 2/x). 
However, we have set M to its most naive value, and 
have not chosen an effective meson mass of less than 2/x, 
because no physical states in the crossed channel have a 
mass between /x and 2/x. The fit could be considerably 
improved if we were to regard M and the meson mass as 
completely free parameters, for example if we used 
1.5 /x insteady of 2/x, and increased i f to a larger value. 

Some improvement in the ~pp fits could be achieved 
by increasing M, which we took equal to the proton 
mass in the pp fit. An average mass of the inelastic re­
action channels would presumably be somewhat larger 
than Mp in reality. The fit for ~pp scattering around 10 
BeV is shown in Fig. 1. The behavior of Hn as a func-

0 .10 .20 

-t(BeV2) 

FIG. 1. Fit to pp elastic scattering at 10 BeV for small momen­
tum transfer. Experimental points are a sample from Ref. 1; 
dashed line is an exponential fit to data. Solid line shows prediction 
of Eq. (4.2) with a = 1.8. 



B1394 R I C H A R D C . A R N O L D 

x .20 

FIG. 2. Graph of 
xHn (s,x) /Hu (s,0) where 
x=fxb, with Hu from 
Eq. (4.2); parameter a 
as in Fig. 1 for pp 
scattering. 

tion of b for pp scattering is sketched in Fig. 2, where we 
have plotted bHu(s,b2)/Hn(sfi) for the same value of a. 
The fit for Kp elastic scattering at similar energies is 
shown in Fig. 3. 

The pp fit is adequate for small (—t); the Kp fit may 
not be as good if smaller (—t) data values continue the 
apparent exponential trend. We should emphasize that 
the normalization (for the elastic cross section at least) 
is also determined by our parameter a. The ratio of 
elastic to total cross section is also predicted by the 
model, by application of the optical theorem; however, 
this is not expected to come out well, since the total 
cross section depends on the small-5 region which is not 
treated correctly. 

It is clear that by adding a sufficiently large number of 
heavy-meson exchange poles one could approximate the 
experimental shape, an exponential in (—/), correspond­
ing to a Gaussian distribution in b for the large-& re­
gions. The data are well fit by a Gaussian distribution 
for H(b2), but there is no physical model leading directly 
to such a distribution which is based on inelastic pro­
cesses. The Regge pole dominance hypothesis for high-

0.2 h 

1 1 1 

\ i 

-

i i , , I i ,.,_ 

i i i 

1^ 

.... , 1 _.l i 
.60 

- t (BeV' ) 

energy interactions16 does predict an exponential drop­
off in t, but if we are to fit the ^pp scattering with only 
Regge poles, it seems necessary to take a Pomeranchuk 
trajectory which has zero slope. If this is true, it is 
difficult to account for the ~pp scattering behavior at 
high energies unless the Regge pole residue functions of 
some vector mesons change sign17 around t = 0. This can­
not happen in a single-channel two-body potential-
theory model,18 from which most of the Regge pole 
knowledge is obtained; however, the question remains 
open when many-particle calculations of Regge poles 
are considered. 

It should also be pointed out that a future high-
energy theory which includes moving branch point con­
tributions in the complex / plane (as well as Regge 
poles) may completely change the pole analysis; the 
arguments concerning residue functions are applicable 
only to poles and not to branch-cut discontinuities, and 
the branch-point contributions may in fact dominate 
the pole terms. 

There may be a theoretical connection between the 
Pomeranchon pole formula (with vanishing slope for the 
trajectory) and our formula (4.2) for the peripheral 
inelastic contributions to elastic scattering. Both give 
a purely imaginary amplitude in first approximation, a 
total cross section which is a constant at high energies, 
and a diffraction pattern which does not change shape 
with increasing energy. The theoretical bridge could be 
supplied by considering multiparticle states which con­
tribute to the Pomeranchon pole structure, in some 
approximation such as the multiperipheral field-theoretic 
model developed by Amati, Fubini, and Stanghellini.19 

This sort of reasoning has been developed by Feinberg 
and Chernavskii.20 

By allowing the (1,1) i^-matrix element to be non­
zero, we can account for the fact that pp and pp elastic 
scattering amplitudes are not the same, and similarly 
for the K~p compared to K+p amplitudes. However, 
one-meson pole terms alone cannot account for the dif­
ference, since the same difficulties exist in such a model 
as with the Regge-pole model17 concerning the signs of 
the pole residues. Thus, we cannot explain the difference 
unless we take the Kn terms from a model including 
multiparticle states in the t channel. 

If a model for Kn is available, it is also possible to 
obtain a shrinking diffraction pattern for pp scattering 
without the explicit introduction of Regge poles, by 

FIG. 3. Fit to Kp elastic scattering near 10 BeV for small 
momentum transfer. Experimental points are taken from Ref. 1. 
Solid line is prediction described in text using dipion with a = 0.60. 

16 S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys-
Rev. 126, 2204 (1962). 

17 W. Rarita and V. L. Teplitz, Phys. Rev. Letters 12, 206 
(1964). 

18 H. Cheng and D. Sharp, Phys. Rev. 132, 1854 (1963); Sec. 
III. 

19 D. Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento 26, 
896 (1962). 

20 Section V of E. L. Feinberg and D. S. Chernavskii, Usp. Fiz. 
Nauk 82, 3 (1964) [English transl.: Soviet Phys.—Usp. 7, 1 
(1964)]. 
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adjusting the energy dependence of Ku. Similar obser­
vations have been made by Durand and Greider.21 

One final observation may be inserted here concern­
ing nucleon-nucleon scattering; the curves for pp and 
~pp seem to be most similar for small momentum trans­
fers.1 This is a favorable indication for a model such as 
presented here for ~pp scattering, since we expect the 
peripheral one-pion exchange processes to be quite 
similar for these two cases even if the interactions differ 
significantly at smaller b values. 

In order to settle on a model for the iT-matrix ele­
ments in the peripheral region, which can be used in the 
succeeding sections to unitarize one-meson exchange 
processes, we adapt the form implied by (4.2); in the 
notation (2.14) (for pp reactions) 

Ci=(s/2M)ll*OiK*(iJ>), (4.4) 

where a=]£y a/. A similar form is to be used for Kp 
reactions, with \i replaced by 2fx. 

V. HIGH-ENERGY KN CHARGE EXCHANGE 

Experimental data at moderately high energies22 on 
the charge exchange reaction K~+p—>K0-Jrn indicate 
a strong forward peak. This leads one to suspect that 
the process may be dominated by one-meson exchange. 
The p meson is the lightest one which can contribute if 
selection rules appropriate to strong interactions are 
taken into account. There is some difficulty with ex­
plaining the small dip in the forward direction as indi­
cated by the 1.8 GeV/c22 data, but we assume that this 
will disappear if the energy is sufficiently high. 

A simple calculation of the magnitude of the cross 
section for this process from the perturbation-theory 
diagram for p exchange was performed. The coupling 
constant factor JPKKJPNNI^ is the only adjustable 
parameter, if we take the pN anomalous-moment cou­
pling strength (relative to the electric part of the cou­
pling) from the analysis of nucleon electromagnetic 
form factor data. An estimate of the expected magni­
tude of this number can be obtained from combining 
the experimental 2-pion decay width of the p with theo­
retical ratios derived from the idea of universal isospin 
coupling of the p23 or the octet models in unitary 
symmetry,24 the predicted values coincide in these 
two approaches. We expect on this basis a value of 2.0 
for fpKKfpNN/^Tr- On the other hand, fitting the experi­
mental charge cross section at 1.8 GeV/c 0.6 mb/sr near 
the forward direction22 with the perturbation-theory 
amplitude calls for fpKKfpNN/4*r=0.2. This factor of 10 
discrepancy would lead one to believe that there is a 
serious quantitative disagreement between the one-

21L. Durand and K. R. Grieder, Phys. Rev. 132, 1217 (1963). 
22 P. M. Dauber, Phys. Rev. 134, B1370 (1964). 
23 J. J. Sakurai, Ann. Phys. (N.Y.) 11, 1 (1960). 
24 M. Gell-Mann, Phys. Rev. 125, 1067 (1962); J. J. Sakurai, in 

Theoretical Physics (International Atomic Energy Agency, Vienna, 
1963), 
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FIG. 4. Solid line gives XHCE(S,X) for KN exchange reaction, 
where x = mpb; HCE taken from Eq. (5.11). Unmodified pole term 
is shown for comparison. 

meson exchange model and experiment, although the 
width of the forward peak is roughly in agreement with 
a p-exchange model. 

On the basis of our i£-matrix approach, we can correct 
this simple model by explicitly taking into account 
peripheral inelastic processes. To accomplish this, it is 
sufficient to assume that the inelastic processes dominate 
the numerical value of the denominators in (2.15) and 
(2.16); then we can take the denominators from our 
fit to Kp elastic scattering in the previous section.25 

The charge-exchange amplitude is a difference between 
the eigenamplitudes for 7=1 and 1=0 scattering. The 
resulting Fourier-Bessel component of the amplitude, 
ignoring spin, will be of the form 

HCE(S,P) = 

HCE(p)(s,b>) 

l+aKo2(2fxb) 
(5.1) 

We have introduced the denominator from Eq. (4.2), 
with numerical coefficient and meson mass chosen to 
fit the Kp elastic-scattering data. The numerator 
HCB(P) is the uncorrected perturbation-theory (meson-
pole) charge-exchange amplitude in the Fourier-Bessel 
representation. We ignore the spin-flip amplitude, since 
the explicit computations above showed it was numeri­
cally dominated by the nonspin-flip term when p^ex-
change is the initial approximation. 

A graph of this function is given in Fig. 4, with the 
uncorrected Fourier-Bessel amplitude for comparison. 
The computed cross section, normalized to the data 
near the forward direction, is shown in Fig. 5. The re­
quired value for fPKKfPNN/^r now is 0.7, which is a 
distinct improvement in bringing theory closer to ex­
periment. It is clear that in general, cross sections for 

25 The forward diffraction peak in Kp scattering seems to have 
the same shape down to 0.2 BeV; R. Crittenden, H. J. Martin, 
W. Kernan, L. Leipuner, A. C. Li, F. Ayer, L. Marshall, and 
M. L. Stevenson, Phys. Rev. Letters 12, 429 (1964). 
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~ 0.6 

J= 0.4 r-

FIG. 5. Fit to KN charge 
exchange cross section for 
1.80 BeV/c beam momen­
tum. Data points are from 
Ref. 22; solid line is pre­
diction from Eq. (5.1) for 
p exchange modified by 
unitarity, with fpNNfPKK/ 
4TT = 0.70. 

processes involving heavy-meson exchanges are sup­
pressed to a considerable extent by the competition of 
peripheral inelasticity, and angular distributions for 
such processes are peaked somewhat more sharply in the 
forward direction than would be expected from the un­
corrected pole approximation. 

VI. HIGH-ENERGY NEUTRON-PROTON 
CHARGE EXCHANGE 

Experiments at 2.04 and 2.85 BeV have indicated a 
very sharp forward peak in the np charge-exchange 
cross section,26 suggesting a peripheral process induced 
by one-pion exchange. The perturbation-theory pole 
contribution for this process was examined by Phillips,27 

who pointed out that this term alone would vanish in 
the forward direction since it contains t in the numera­
tor. Phillips suggested that constructive interference 
may take place between the one-pion term and other 
"background" components of the elastic-scattering am­
plitude, resulting in a narrow forward peak which could 
account for the experimental result. 
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An alternative model was proposed by Muzinich,28 

using only the p-meson exchange amplitude, which was 
formulated as a Regge pole term. By suitable choice of 
Regge parameters, it was possible to fit the charge-
exchange data in Ref. 24. I t was subsequently pointed 
out by Phillips29 that such a fit does not seem to be 
consistent with an analysis of the difference between 
the pp and np total cross section, and that the residue 
of the p Regge pole must change sign near / = 0 in 
Muzinich's model.30 Later, a more complicated model 
was proposed by Ahmadzadeh31 who introduced another 
heavy isovector meson to correct the difficulties with p 
exchange in Muzinich's model. 

Our analysis will return to the idea of a basic process 
caused by one-pion exchange, but corrected through 
use of the i^-matrix formulas for the inelastic competi­
tion and diffraction scattering in the peripheral region. 
We will consider first a spinless model based on a one-
pion-exchange matrix element proportional to t/(n2—t), 
which vanishes in the forward direction, and show how 
the unitarity modifications change this matrix element 
to give a forward peak. Then we will consider the spin 
structure of nucleon-nucleon scattering and show in 
the actual case how it is possible to obtain the narrow 
forward peak through inelastic effects. A definite pre­
diction is not possible in the latter case, however, since 
it is necessary to examine the spin dependence of in­
elastic channels, for which data are not available. 

Beginning with the spinless model, we note that the 
unitarity saturation of low partial waves as discussed 
at the end of Sec. I I will be quite important here. Dele­
tion of the S-wave (or small b) component allows us to 
replace t/(fJL2—t) with M2/(M2—t), which does not vanish 
in the forward direction; in fact, this already gives 
approximately the right charge-exchange amplitude for 
small angles. Denoting the Fourier-Bessel transform of 
the charge-exchange amplitude based on this replace­
ment by J9cE(7r), we have a formula for # C E identical in 
form with (5.1) 

FIG. 6. Fit to neutron-proton charge-exchange cross section at 
2.85 BeV. Experimental points are from Ref. 26; solid line is ir 
plus p superposition modified by inelastic unitarity, as described 
in text. 

26 H. Palevsky, J. A. Moore, R. L. Stearns, H. R. Muether, 
R. J. Sutter, R. E. Chrien, A. P. Jain, and K. Otnes, Phys. Rev. 
Letters 9, 509 (1962). 

27 R. J. N. Phillips, Phys. Letters 4, 19 (1963). 

Hcv(s,b*) = HCvM(s,V)/A(b), (6.1) 

where A(b) has the same form as the denominator in 
(5.1) with a (and nb as the argument of K0) chosen to 
fit the proton-proton elastic scattering amplitude. 
Numerical fits in this case show that (6.1) yields ap­
proximately a 50% reduction in cross section in the 
forward direction compared to the pole term, and an 
increased peaking toward small angles which brings the 
theoretical curve into good agreement with experiment. 
The more slowly varying contributions, which are still 
appreciable for (—01/2>M, may be ascribed to a 
^-exchange contribution. The fit to data based on (6.1) 

2 8 1 . J. Muzinich, Phys. Rev. Letters 11, 88 (1963). 
29 R. J. N. Phillips, Phys. Rev. Letters 11, 442 (1963). 
30 The undesirability of such a situation has been discussed in 

Sec. IV. 
31 A. Ahmadzadeh, Phys. Rev. 134, B633 (1963). 

file:///-~~pion


H I G H - E N E R G Y P E R I P H E R A L I N T E R A C T I O N S B 1397 

plus a p contribution of the same form is given in Fig. 6, 
with the function (n2—t)~2 for comparison. 

We observe that the suppression of the magnitude of 
the off-diagonal peripheral cross section is less in this 
example than in the p exchange case treated in Sec. V. 
The physical reason is clear; in the pion-exchange case, 
the effective range of interaction is comparable to or 
larger than that of the inelastic process, leaving much of 
the function H(b) undisturbed; whereas in the heavy-
meson processes the inelastic terms have a larger range 
and suppress a great deal more of the pole term's b 
components. 

A similar pole-term model has been investigated by 
Islam and Preist32; they are able to fit the data moder­
ately well, but utilize form factors to obtain the re­
quired behavior for the pion term. Since their pion form 
factors are just those required phenomenologically to 
account for other experiments involving one-pion ex­
change,3 it is not surprising that our approaches agree 
in the end. The pN coupling constant they require, 
fPNN2/^—0A, is rather small compared to universality 
predictions24,25; our fit allows a larger value (about 1.0) 
because of the unitarity effects. 

We now turn to the realistic case including nucleon 
spin.33 The helicity formulation of nucleon-nucleon 
scattering appropriate for relativistic energies has been 
presented by Goldberger, Grisaru, MacDowell, and 
Wong (GGMW).34 Combining the formulas (6.6) of 
GGMW with (3.5) of Ref. 35, we find the one-pion ex­
change forms of the 1=1 partial wave amplitudes hJ 

[defined in formula (3.1) of Ref. 35] as follows: 

A U
J = - * < / = : -

1 ^ 

4 4?r 

X QAXo)-

i e 

JQj-i(Xo)+(J+l)QJ+1(X0y 

2 / + 1 
(6.2) 

A / = _ A 2 2 / = : -

X QAXo) 

h12
J=07 

4 4TT 

(j+i)Qj-i(x0)+JQj+i(x0y 

2J+1 

where X 0 = 1 + M 7 2 & 2 . The 1=0 amplitudes are ( - 3 ) 
times the 7 = 1 amplitudes. The charge-exchange ampli­
tude is the difference between 1 = 0 and 1=1 ampli­
tudes after corrections from inelastic unitarity have 
been included. 

32 M. M. Islam and T. W. Preist, Phys. Rev. Letters 11, 444 
(1963). 

331 am indebted to Dr. R. J. N. Phillips for a private communi­
cation concerning the fallacies of a spinless treatment. 

34 M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and 
D. Y. Wong, Phys. Rev. 120, 2250 (1960). 

3 5 1 . J. Muzinich, Phys. Rev. 130, 1571 (1963). 

The unitarity relations now involve the uncoupled 
hoJ and h\J amplitudes, and the triplet amplitudes 
hnJ, hi2J, h22J are coupled among themselves.34 

We assume that those helicity amplitudes which are 
zero before corrections are applied (one-pion exchange 
only) remain zero when unitarity is enforced. Then we 
have only the two amplitudes fa and fa, which have the 
angular momentum decomposition34,35 

fa(s,t) = E~* Z(2J+l)d0o
J(z)thoJ(s)-hnJ(s)-l, 

fa(s,t) = E~iZ(2J+l)d1,_1
J(z)[k22

J(s)-h1
J(s)-]. (6.3) 

J 

These may be converted to the impact-parameter rep­
resentation by use of the asymptotic forms (for large / ) 
of the Legendre functions; after utilizing formula (3.30) 
of Ref. 35, and passing to the limit of a large number of 
angular momentum contributions, we obtain the 
representations 

fa(s,t)=(2k2/E) » d 6 C A o ( W - A i i M > o ( J ( - i ) 1 7 2 ) , 

i 4>i{s,t) = (2k*/E) / bdblhi(b,s) - h1(b,s)~] 

X /o(H-01 /2)-(i+2) 

X — UK-tY»)\. (6.4) 
1/2 K-t) 

The functions h(b,s) here are to be identified with hJ(s) 
for large / , where ~kb = J-\-\. We have removed any 
terms which are singular for small / values, as required 
by unitarity. The total charge-exchange cross section 
will be proportional to the sum of the squares of fa 
and fa. 

Note that $2 has an angular dependence identical to 
that of the spinless model, whereas <£4 will always vanish 
in the forward direction. Thus, if we are to ascribe the 
sharp forward peak to the pion-exchange process modi­
fied by inelastic unitarity, it seems to be necessary that 
(h22—hi) be much smaller than (ho—ha). 

Such a situation will obtain if the long-range inelas­
tic processes in the triplet amplitudes (both / = / and 
/ = J±1) are much stronger than in the singlet (ho) 
amplitudes; then the values of hi and fe will be damped 
strongly from the inelastic competition, while ho will 
survive alone to produce the forward peak from fa. 
Detailed experimental data on inelastic processes would 
be necessary, then, for a direct check on this analysis. 
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VII. PERIPHERAL ISOBAR PRODUCTION MODELS 

Some inelastic reactions yielding isobars at high en­
ergies, for example K+-\-p —> K*-\-p at 3 BeV/c,36 show 
a very strong forward peaking in the over-all center-of-
mass reaction angle, and appear to be good candidates 
for one-meson exchange process. There seems to be a 
considerable variation in the degree with which data 
for such processes fit simple pole approximations as far 
as the momentum-transfer dependence is concerned. 
This has been interpreted by most investigators2 as 
evidence that vertex corrections in the field-theoretic 
sense are very important. However, we have seen in our 
analysis how the momentum-transfer characteristics 
may be quite different from the pole approximations in 
a unitarized theory including inelastic channels. As dis­
cussed in the introduction, such effects have been 
treated in Refs. 4 and 5 by introducing a phenomenologi-
cal absorptive potential. The physical picture presented 
by the iT-matrix formalism is somewhat more trans­
parent. We will now show how qualitative agreement of 
most of the available peripheral isobar-production 
data with a theory based on one-meson pole terms may 
be achieved. Detailed calculations will depend on the 
spin structure of the amplitudes, and will not be carried 
out here. 

In our approximate form of the iT-matrix approach, 
every off-diagonal (production) matrix element takes 
on the form (2.16). This simple form is essentially due 
to ignoring the interactions of the bodies in the final 
states. 
< I t is apparent that predictions of the one-meson pole 
terms concerning the alignment or relative population 
of spin states of the isobars are not affected by the 
peripheral inelastic damping corrections, which appear 
in the denominator of (2.16). As a consequence, pre­
dictions such as the Stodolsky-Sakurai12,37 vector-
meson model makes concerning final-state (isobar decay) 
angular correlations remain valid in our iT-matrix model. 
These predicted correlations are consistent, in every 
case which is probably peripheral, with the experi-

36 G. R. Lynch, M. Ferro-Luzzi, R. George, Y. Goldschmidt-
Clermont, V. P. Henri, B. Jongejans, D. W. Leith, F. Muller, and 
J. M. Perreau, Phys. Letters 9, 359 (1964). 

37 L. Stodolsky, Phys. Rev. 134, B1099 (1964); K. Gottfried 
and J. D. Jackson, Phys. Letters 8, 144 (1964). 

mental33,38 data. On the other hand, we expect the in­
elastic unitarity corrections will increase the forward 
peaking of all such reactions; much more so in cases 
where the elastic scattering of the initial-state particles 
exhibits a diffraction character, with a large total cross 
section, signifying strong inelastic peripheral processes. 

This qualitative consideration appears to fit quite 
well with the reactions considered in Refs. 2 and 3. In 
comparing the theoretical curves given in those refer­
ences, we must first remember to subtract out in the 
matrix element any terms which go to a constant for 
large / as explained at the end of Sec. I I before squaring 
to obtain the cross section. This immediately clears up 
the main difficulty with the curves given in Ref. 2, 
Fig. 3, which treat the reaction ir++p —> co°+7Vr

3/2*. 
The matrix elements in the one-meson exchange model 
have an additional power of / in the numerator due to 
the large total spin of the final states, compared to re­
actions such as 7r++p—>ir°+N*. The latter reaction 
(Fig. 4 of Ref. 2) can be fit correctly after unitarity 
corrections are put in. Note that these two processes, 
with ir+p initial states, deviate more strongly from the 
pole terms than K++p-> K»+Nz!2* (Fig. 2 of Ref. 2); 
the latter is already quite well fit. We expect this trend, 
since K+p reactions have a smaller total cross section 
and smaller elastic cross section than ir+p reactions at 
the energies under consideration. Furthermore, we pre­
dict that Kp reactions will show about the same degree 
of forward enhancement as the w+p reactions as long 
as the Kp and ^—p cross sections are comparable at 
the same energies; around 3 BeV this is the case. Some 
caution must be used, however, in predictions for ener­
gies below 3 BeV, since the w+p and w~p diffraction 
peaks do not exhibit identical behavior for these low 
energies.39 
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